Ehresmann monoids: Adequacy and expansions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ehresmann monoids

Ehresmann monoids form a variety of biunary monoids, that is, monoids equipped with two basic unary operations, the images of which coincide and form a semilattice of projections. The monoid of binary relations BX on any setX with unary operations of domain and range is Ehresmann. Inverse monoids, regarded as biunary submonoids of BX via the Wagner-Preston representation theorem, are therefore ...

متن کامل

Left Adequate and Left Ehresmann Monoids Ii

This article is the second of two presenting a new approach to left adequate monoids. In the first, we introduced the notion of being T -proper, where T is a submonoid of a left adequate monoid M . We showed that the free left adequate monoid on a set X is X∗-proper. Further, any left adequate monoid M has an X∗-proper cover for some set X , that is, there is an X∗proper left adequate monoid M̂ ...

متن کامل

Structure of Left Adequate and Left Ehresmann Monoids

This is the first of two articles studying the structure of left adequate and, more generally, of left Ehresmann monoids. Motivated by a careful analysis of normal forms, we introduce here a concept of proper for a left adequate monoid M . In fact, our notion is that of T -proper, where T is a submonoid of M . We show that any left adequate monoid M has an X∗proper cover for some set X , that i...

متن کامل

Restriction and Ehresmann Semigroups

Inverse semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, in this case a 7→ a−1. The theory of inverse semigroups is perhaps the best developed within semigroup theory, and relies on two factors: an inverse semigroup S is regular, and has semilattice of idempotents. Three major approaches to the structure of inverse semigroups have e...

متن کامل

Series Expansions of Lyapunov Exponents and Forgetful Monoids

We consider Lyapunov exponents of random iterates of monotone homogeneous maps. We assume that the images of some iterates are lines, with positive probability. Using this memoryloss property which holds generically for random products of matrices over the max-plus semiring, and in particular, for Tetris-like heaps of pieces models, we give a series expansion formula for the Lyapunov exponent, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2018

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2018.06.036